Arithmetic Subgroups of Algebraic Groups by Armand Borel and Harish-chandra

نویسندگان

  • ARMAND BOREL
  • HARISH CHANDRA
چکیده

A complex algebraic group G is in this note a subgroup of GL(n, C), the elements of which are all invertible matrices whose coefficients annihilate some set of polynomials {PM[Xn, • • • , X n n ]} in n 2 indeterminates. I t is said to be defined over a field KQC if the polynomials can be chosen so as to have coefficients in K. Given a subring B of C, we denote by GB the subgroup of elements of G which have coefficients in JB, and whose determinant is a unit of B. Assume in particular G to be defined over Q. Then Gz is an "arithmetically defined discrete subgroup" of GRl or, more briefly, an arithmetic subgroup of GR. A typical example is the group of units of a nondegenerate integral quadratic form, and as a matter of fact, the main results stated below generalize facts known in this case from reduction theory. The proofs will be published elsewhere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction to Abstract Class Formations by K. Grant and G. Whaples

1. A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Bull. Amer. Math. Soc. 67 (1961), 579-583. 2. , Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485-535. 3. Harish-Chandra, On the characters of a semisimple Lie group, Bull. Amer. Math. Soc. 61 (1955), 389-396. 4. , Differential operators on a semisimple Lie algebra, Amer. J. Math. 79 (1957), 87-12...

متن کامل

Constructing Arithmetic Subgroups of Unipotent Groups

Let G be a unipotent algebraic subgroup of some GLm(C) defined over Q. We describe an algorithm for finding a finite set of generators of the subgroup G(Z) = G ∩ GLm(Z). This is based on a new proof of the result (in more general form due to Borel and Harish-Chandra) that such a finite generating set exists.

متن کامل

To the memory of Armand Borel GENERALIZED HARISH-CHANDRA MODULES WITH GENERIC MINIMAL k-TYPE

We make a first step towards a classification of simple generalized HarishChandra modules which are not Harish-Chandra modules or weight modules of finite type. For an arbitrary algebraic reductive pair of complex Lie algebras (g, k), we construct, via cohomological induction, the fundamental series F ·(p, E) of generalized Harish-Chandra modules. We then use F ·(p, E) to characterize any simpl...

متن کامل

GENERALIZED HARISH-CHANDRA MODULES WITH GENERIC MINIMAL k-TYPE

We make a first step towards a classification of simple generalized Harish-Chandra modules which are not Harish-Chandra modules or weight modules of finite type. For an arbitrary algebraic reductive pair of complex Lie algebras (g, k), we construct, via cohomological induction, the fundamental series F ·(p, E) of generalized Harish-Chandra modules. We then use F ·(p, E) to characterize any simp...

متن کامل

Counting orbits of integral points in families of affine homogeneous varieties and diagonal flows

In this paper, we study the distribution of integral points on parametric families of affine homogeneous varieties. By the work of Borel and Harish-Chandra, the set of integral points on each such variety consists of finitely many orbits of arithmetic groups, and we establish an asymptotic formula (on average) for the number of the orbits indexed by their Siegel weights. Our arguments use the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007